Economic Emission Short-term Hydrothermal Scheduling using a Dynamically Controlled Particle Swarm Optimization

نویسندگان

  • Vinay K. Jadoun
  • Nikhil Gupta
  • Anil Swarnkar
چکیده

In this study a Dynamically Controlled Particle Swarm Optimization (DCPSO) method has been developed to solve Economic Emission Short-Term Hydrothermal Scheduling (EESTHS) problem of power system with a variety of operational and network constraints. The inertial, cognitive and social behavior of the swarm is modified by introducing exponential functions for better exploration and exploitation of the search space. A new concept of preceding and aggregate experience of particle is proposed which makes PSO highly efficient. A correction algorithm is suggested to handle various constraints related to hydrothermal plants. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement. The effectiveness of the proposed method is investigated on two standard hydrothermal test systems considering various operational constraints. The application results show that the proposed DCPSO method is very promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization

This paper presents an improved quantum-behaved particle swarm optimization (IQPSO) for short-term combined economic emission hydrothermal scheduling, which is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing emission cost. In this paper, quantum-behaved particle swarm optimization is improved employing heuristic strategies in order to handle the equality const...

متن کامل

Quadratic approximation based differential evolution with valuable trade off approach for bi-objective short-term hydrothermal scheduling

Short-term combined economic emission hydrothermal scheduling (CEES) is a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. In this paper, quadratic approximation based differential evolution with valuable trade off approach (QADEVT) has been developed to solve the bi-objective hydrothermal scheduling problem. The practical hydrothermal system possesses vari...

متن کامل

Optimal Scheduling of Cascaded Hydrothermal Systems Using a New Improved Particle Swarm Optimization Technique

Optimum scheduling of hydrothermal plants generation is of great importance to electric utilities. Many evolutionary techniques such as particle swarm optimization, differential evolution have been applied to solve these problems and found to perform in a better way in comparison with conventional optimization methods. But often these methods converge to a sub-optimal solution prematurely. This...

متن کامل

A Chaotic Quantum Behaved Particle Swarm Optimization Algorithm for Short-term Hydrothermal Scheduling

Abstract: This study proposes a novel chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm for solving shortterm hydrothermal scheduling problem with a set of equality and inequality constraints. In the proposed method, chaotic local search technique is employed to enhance the local search capability and convergence rate of the algorithm. In addition, a novel constraint handlin...

متن کامل

Short Term Hydrothermal Scheduling in Power System Using Improved Particle Swarm Optimization

The problem of determining the optimal hourly generation in hydrothermal power plants and total thermal generation is studied. A multi reservoir cascaded hydro-electric system with a non-linear relationship between water discharge rate, net head and power generation is considered. PSO technique has been motivated by the behavior of the organisms such as fish schooling and bird flocking. The ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015